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Abstract: Fluid mechanics is a field theory of mass flows of Galilean symmetry. In the gauge theory of theoretical
physics, a guiding principle is that laws of physics should be expressed in a form that is independent of any
particular coordinate system. Variational formulations of fluid mechanics are reviewed from this point of view,
and then a new variational formulation is proposed, which leads to a new representation of compressible rotational
flows of an ideal fluid. This improves the classical solution of Clebsch (1859). Present Lagrangian for the action
principle consists of main terms of total kinetic energy and internal energy (with negative sign), together with
three additional terms yielding the equations of continuity, entropy and the third term which provides rotational
component of velocity field. It is verified that the system of new expressions in fact satisfies the Euler’s equation of
motion. Associated with two symmetries (translation and space-rotation), there are two gauge fields: E ≡ (v ·∇)v
and H ≡ ∇ × v, which do not exist in the system of discrete masses. One can show that those are analogous to
the electric field and magnetic field in the electromagnetism, and fluid Maxwell equations can be formulated for
E and H . Sound wave within the fluid is analogous to the electromagnetic wave, in the sense that phase speeds of
both waves are independent of wave lengths, i.e. non-dispersive.
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1 Introduction

A symmetry of a physical system means invariance
with respect to a certain group of transformations and
plays an essential role in the gauge theory of theoreti-
cal physics. Fluid mechanics is a field theory of New-
tonian mechanics of Galilean symmetry. It is well-
known that a system of point masses has global gauge
symmetries with respect to both translation and rota-
tion. In traditional mechanics, these are interpreted
as the homogeneity and isotropy of the space (e.g. in
Landau & Lifshitz (1976) [1], §7 and §9), which are
in fact the symmetries yielding conservation laws of
total momentum and angular momentum respectively.
Corresponding to those symmetries of the mechani-
cal system of discrete masses, two symmetries of fluid
flows are known: symmetries of translation (space and
time) and space-rotation.

Guided by the gauge theory, Kambe [2, 3] stud-
ied flow fields of an ideal compressible fluid and in-
vestigated consequence of both global and local in-
variances of the fields in the space-time (x, t), where
x = (x1, x2, x3) is the three-dimensional space coor-
dinates. Velocity field is represented as v(x, t). An
essential building block of the gauge theory is the co-
variant derivative. In fact, the convective derivative

Dt, defined by

Dt ≡ ∂t+v ·∇ , ∂t ≡ ∂/∂t, ∇ = (∂/∂xi), (1)

(i.e. the Lagrange derivative in the fluid mechanics)
can be identified as the covariant derivative in the
framework of gauge theory. Based on this, we can
define appropriate Lagrangian functions for motions
of an ideal fluid. Euler’s equation of motion can be
derived from the variational principle, i.e. the action
principle. In addition, the continuity equation and en-
tropy equation are derived simultaneously.

Standard variational formulations of fluid flows
are reviewed first, and then a new variational formu-
lation is proposed, which leads to a new representa-
tion of compressible rotational flows of an ideal fluid.
This improves the classical solution of Clebsch (1859)
[4]. From about a half century ago, there was a fun-
damental question how rotational component can be
formulated in the variational framework for an ideal
compressible fluid. The present improved solution is
an answer to the long-standing question.

Total kinetic energy and momentum are global in-
tegrals of 1

2 ρ ⟨v,v⟩ and ρv respectively that charac-
terize the flow field globally. There is another impor-
tant global integral (a conservative integral over the
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whole space), which is the helicity H defined by

H ≡
∫

⟨v,ω ⟩ d3x , (2)

where ω = ∇× v is the vorticity.
Associated with two symmetries (translation and

space-rotation) of the fluid flow, there are two gauge
fields E = (v ·∇)v and H = ∇×v, which do not ex-
ist in the system of discrete masses, characterized by
the same symmetries [2, 9]. One can show that those
are analogous to the electric field and magnetic field
in the electromagnetism, and fluid Maxwell equations
can be formulated for them [3, 8]. This will be de-
scribed in the section 4.

In the next section 2, basic properties of flow
fields are summarized. In §3, first, the action prin-
ciple for fluid flows is summarized for two different
approaches of Lagrangian and Eulerian point of view.
In the former case the variations are taken for the par-
ticle positions, while in the latter case, the variations
are taken for all the field variables independently. The
Euler-Lagrange equation for the former Lagrangian
variation results in the Euler’s equation of motion. On
the other hand, a traditional approach of the Eulerian
variation leads to a system of representations equiva-
lent to the classical Clebsch solution [4]. In this solu-
tion, the vorticity has a special form such that the he-
licity vanishes. In a particular case of isentropic fluid
in which the entropy s is a constant, the flow field thus
obtained becomes irrotational, as mentioned above.

It is well-known that, even in such an isentropic
fluid, the fluid flow can support rotational velocity
fields. In fact, Euler [5] showed already in 1755 that
his equation of motion can describe rotational flows.
In the second half of §3, a new variational formulation
is proposed and a new representation of compressible
rotational flows of an ideal fluid is deduced.

2 Basic properties of flow fields
2.1 Equations of fluid mechanics
Equation of motion of an ideal fluid is given by the
Euler’s equation of motion:

∂tv + (v · ∇)v = −1

ρ
∇p. (3)

This is supplemented by the followings:

∂tρ+ v · ∇ρ+ ρ∇ · v = 0 , (4)
∂ts+ v · ∇s = 0 , (5)

∂tω +∇× (ω × v) = 0, (6)

where ρ is the fluid density, s the entropy per unit
mass, p the pressure. The equation (4) is the conti-
nuity equation, and (6) is the vorticity equation, while

(5) is the entropy equation, stating that each fluid par-
ticle keeps its initial entropy (i.e. adiabatic).

If initial entropy field is uniform with a constant
value s0, the fluid keeps the isentropic state s = s0 at
any later time and everywhere. In this case, we have
(1/ρ)∇ p = ∇h by the thermodynamics where h is
the enthalpy per unit mass.1 In isentropic flows, an
enthalpy variation ∆h and a density variation ∆ρ are
related by

∆h =
1

ρ
∆p =

a2

ρ
∆ρ, (7)

where ∆p = a2∆ρ and a2 = (∂p/∂ρ)s. The
form (∂p/∂ρ)s denotes the derivative with s fixed,
and a = {(∂p/∂ρ)s}1/2 is the sound speed. From
the above, we have ∂tρ = (ρ/a2)∂th and ∇ρ =
(ρ/a2)∇h. Therefore, the equation (4) is transformed
to (ρ/a2) (∂th + v · ∇h + a2∇ · v) = 0. Thus, the
fluid equations (3) and (4) reduce to the followings:

∂tv + (v · ∇)v +∇h = 0, (8)
∂th+ v · ∇h+ a2∇ · v = 0. (9)

2.2 Equations of electromagnetism
In electromagnetism, two vector fields Eem and Hem

can be defined in terms of a vector potential Aem and
a scalar potential ϕem by

Eem = −c−1∂tA
em−∇ϕem, Hem = ∇×Aem. (10)

Using these definitions,2 Maxwell’s equations are sat-
isfied if the two fields Aem and ϕem satisfy the follow-
ing equations ([6], Chap.8):

∂tϕ
em + c∇ ·Aem = 0, (Lorentz condition), (11)

(∂ 2
t − c2∇2)ϕem = c2qe, (12)

(∂ 2
t − c2∇2)Aem = c2Je, (13)

where c is the light velocity, qe the charge density, and
Je the current density vector.

2.3 Wave property and gauge invariance
Linearizing (8) by neglecting (v · ∇)v, and lineariz-
ing (9) by neglecting v · ∇h and replacing a with a
constant value a0, we have

∂tv +∇h = 0, ∂th+ a20∇ · v = 0. (14)

Eliminating v from the two equations, we obtain the
wave equation (∂ 2

t − a 2
0∇2)h = 0 for sound waves.

1From the thermodynamics, dh = (1/ρ) dp + T ds where T
is the temperature. If ds = 0, we have dh = (1/ρ) dp.

2Vector potential and scalar potential were used already by
Maxwell (1873), and the equation of electromagnetic wave was
derived by using the vector potential.
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Using it, we obtain the wave equation for v as well.
Thus, we have

(∂ 2
t − a 2

0∇2)h = 0, (∂ 2
t − a 2

0∇2)v = 0. (15)

It is remarkable that we have a close analogy between
the two systems of fluid and electromagnetism. In
vacuum space where qe = 0, Je = 0, the wave equa-
tions (??) reduce to

(∂ 2
t − c2∇2)ϕem = 0, (∂ 2

t − c2∇2)Aem = 0.
(16)

It is seen that c (light speed) ⇔ a0 (sound speed).
Notable feature of the sund wave equations (15) is
non-dispersive. Namely, the dispersion relation for
waves of wave number k and frequency ω is given
by ω2 = a 2

0 k
2, and the phase speed ω/k is equal to

a0 independent of the wave length 2π/k. The same
is true for the equation (16) of the electromagnetic
wave. Note that this is closely related to the system
of Maxwell equations.

In addition, the second equation of (14), obtained
from the continuity equation by linearization, is anal-
ogous to the Lorentz condition (11) by the correspon-
dence,

(c, Aem, ϕem) ⇐⇒ (a0, a0v, h).

This implies possibility of formulation of fluid
Maxwell equations for which the vector potential is
played by v (except for the coefficient a0, abbrevi-
ated in the present formulation for simplicity) and the
scalar potential played by h. According to this find-
ing, let us propose two vector fields defined by

E = −∂tv −∇h, H = ∇× v. (17)

Consider the following transformations: v′ = v +
∇f, h′ = h − ∂tf . The vector fields E′ and H ′

defined by v′ and h′ are unchanged, namely we have
E′ = E and H ′ = H . Thus in fluid flows, there
exists the same gauge invariance as that in the electro-
magnetism. [6]

3 Variational principle
In the variational principle of field theory, variations
are taken for all the field variables independently. This
is called the Eulerian variation in fluid mechanics [7].
Let us define a Lagrangian density ΛEul by

ΛEul(v, ρ, s) =
1
2 ρ ⟨v,v⟩ − ρ ϵ(ρ, s), (18)

[2, 7], where ϵ(ρ, s) is the internal energy per unit
mass depending on ρ and the entropy s. We take vari-
ations of the variables v, ρ and s, by assuming all the

variations being independent. On the other hand, in
the Lagrangian variation, variations are taken with re-
spect to the particle position X(a, τ) with a fixed,
where the Lagrangian parameters a = (a1, a2, a3) are
defined by the initial particle position a = X(a, 0)
and τ is the time used in combination with a.

3.1 Lagrangian variation
The Lagrangian density ΛLag in this case is defined by

ΛLag (X, ∂aX) = 1
2 ρ (∂τX)2 − ρϵ(X, ∂aX), (19)

where ∂τX ≡ ∂X/∂τ = v is the particle velocity,
and (∂aX)kj = ∂Xk/∂aj , written also as Xk

j . Time
derivative is denoted by Xk

0 = ∂Xk/∂τ . The mass
of the fluid particle a of volume dV is given by m =
ρ dV . Considering the following variations,

Xk → Xk + δXk, Xk
µ → Xk

µ + ∂(δXk)/∂aµ.

for k = 1, 2, 3; µ = 0, · · · , 3, and substituting these
into (19), we obtain the Euler-Lagrange equation,

∂

∂aµ

( ∂Λ

∂Xk
µ

)
− ∂Λ

∂Xk
= 0,

from the variational principle. This results in the
equation of motion, Xk

ττ = −(1/ρ) ∂kp, for k =
1, 2, 3 (see [3, §7.4]). This transforms to the Euler’s
equation of motion by replacing Xk

ττ = ∂ 2
τ X

k with
∂tv

k+(v ·∇)vk, according to Leonhard Euler (1755)
[5]. Thus, the Euler’s equation of motion (3) has been
derived by the Lagrangian variation.

3.2 Eulerian variation
For the Eulerian variation, it is proposed that the La-
grangian (18) is supplemented by additional terms as-
sociated with conservations of mass, entropy and vor-
ticity. Thus the total Lagrangian L∗ is defined by

L∗ =

∫
V
Λ(v, ρ, s, ϕ, ψ,A,Ω) d3x , (20)

Λ = 1
2 ρ⟨v,v⟩ − ρϵ(ρ, s)

−ρDtϕ− ρsDtψ − ⟨L∗
t [A], Ω⟩, (21)

where the last term ⟨L∗
t [A], Ω⟩ is a new term intro-

duced in the present formuation from the view point
of gauge theory. All the terms of the Lagrangian den-
sity Λ have the forms, which do not violate the sym-
metry consideration of gauge theory (see Appendices
A and B, or [2, 3]). The domain V is a volume in the
x-space chosen arbitrarily, Λ is the Lagrangian den-
sity, ϕ(x, t) and ψ(x, t) are scalar potentials associ-
ated with mass and entropy. The vectors Ω and A are
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potentials of tangent vector and cotangent vector re-
spectively.3 The vector Ω is assumed to be solenoidal:

∂kΩ
k = 0. (22)

An action integral is defined by

J =

∫ t2

t1

L∗dt =
∫
V⊗It

Λ(v, ρ, s, ϕ, ψ,A,Ω) d4x, (23)

where d4x = dt d3x, and the time interval It =
[t1, t2] is chosen arbitrarily.

The action principle is defined by

δ J =

∫
V⊗It

δΛ(v, ρ, s, ϕ, ψ,A,Ω) d4x = 0, (24)

for its variation δJ with respect to arbitrary variations
of the variables v, ρ, s, ϕ, ψ,A, and Ω, where all the
variations are assumed to be independent, and also to
vanish on the boundary surface S enclosing the inte-
gration domain V ⊗ It. Substituting the varied vari-
ables v + δv, ρ + δρ, s + δs, ϕ + δϕ, ψ + δψ,
A+ δA, and Ω+ δΩ into Λ[vi, ρ, s, ϕ, ψ,A,Ω] and
writing its variation as δΛ, we obtain

δΛ = δvi
[
ρ (vi − ∂iϕ− s ∂iψ)− Ωk ∂iAk

+Ωk ∂kAi

]
− ∂k(ΩkAi δvi) (25)

+ δρ ( 12 u
2 − h− Dtϕ− sDtψ)− δs ρ (Dtψ + T )

+ δϕ ( ∂tρ+∇ · (ρv) )− ∂t(ρ δϕ)−∇ · (ρv δϕ)
+ δψ ( ∂t(ρs) +∇ · (ρsv) )− ∂t(ρs δψ)

−∇ · (ρsv δψ).
−⟨L∗

t [A], δΩ ⟩+
⟨
δA,

(
Lt[Ω] +Ω ∂kv

k
)⟩
.

where h = ϵ + p/ρ is the specific enthalpy, and stan-
dard relations of thermodynamics are used.4 As usual,
all the surface integrals (obtained with integration by
parts) vanish by the assumed boundary conditions.
Thus, the variational principle δJ =

∫
δΛ d4x = 0

for independent variations of δvi, δρ, δs, etc. results
in the followings:

δvi : ρ (vi − ∂iϕ− s ∂iψ)− Ωk ∂iAk

+ Ωk ∂kAi = 0 , (26)
δρ : 1

2 v
2 − h− Dtϕ− sDtψ = 0 , (27)

δs : Dtψ + T = 0 , (28)
3Scalar product between two tangent vectors a = (ai) and

b = (bi) is denoted in this paper by four ways, ⟨a, b ⟩, a · b,
δija

ibj , or aibi, where ai(= δija
j) is a cotangent vector (derived

from the tangent vector ai).
4(∂ϵ/∂ρ)s = p/ρ2, (∂/∂ρ)s(ρ ϵ) = ϵ + ρ (∂ϵ/∂ρ)s = ϵ +

p/ρ = h, and (∂ϵ/∂s)ρ = T . Then we have dϵ = (p/ρ2) dρ +
Tds and dh = (1/ρ) dp+ Tds.

δϕ : ∂tρ+∇ · (ρv) = 0 , (29)
δψ : ∂t(ρs) +∇ · (ρsv) = 0 , (30)
δΩ : L∗

t [A] = 0 . (31)

δA : Lt[Ω] +Ω ∂kv
k

= ∂tΩ+∇× (Ω× v) = 0 , (32)

The equation (26) gives a new expression of v:

v = ∇ϕ+ s∇ψ +
1

ρ
w , (33)

where w = (wi) is given by

w = Ωk ∇Ak − (Ω · ∇)A = Ω× (∇×A), (34)

wi = Ωk Cik, Cik = ∂iAk − ∂kAi. (35)

Note that we have the equality,

Ωk Cik = [Ω× (∇×A)]i.

The vorticity ω = ∇× v is given by

ω = ∇s×∇ψ +
1

ρ
∇×w − 1

ρ2
∇ρ×w. (36)

The second and third terms express non-vanishing
vorticity even in an isentropic fluid of uniform s.
Defining B = ∇×A, we hvae

∇×w = (B · ∇)Ω− (Ω · ∇)B (37)
= ∇Ωk ×∇Ak −∇Ωk × ∂kA− (Ω · ∇)B. (38)

Thus, the present formulation yields the rotational
component naturally by the variational principle.

From the variations of δϕ and δψ, we obtain

δϕ : ∂tρ+∇ · (ρv) = 0 , (39)

δψ : ∂t(ρs) +∇ · (ρsv) = 0 .

Using (39), the second reduces to the adiabatic equa-
tion:

∂ts+ v · ∇s = Dts = 0 . (40)

Thus, we obtain the continuity equation (39) and en-
tropy equation (40) from the action principle. The
equation (39) can be rewritten as

∂tρ+ v · ∇ρ+ ρ∇ · v = Dtρ+ ρ∇ · v = 0 . (41)

3.3 Traditional variation
In the traditional Eulerian variation, the Lagrangian
density Λ does not include the last term ⟨L∗

t [A], Ω⟩
of (21). As a result, the velocity v does not include
the last term (1/ρ)w of the velocity (33 ). Then, the
vorticity ω∗ is given by

ω∗ = ∇× v = ∇s×∇ψ, (42)
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which vanishes in an isentropic fluid of uniform s.
The scalar product ω∗ · v is given by

ω∗ · v = (∇s×∇ψ) · (∇ϕ+ s∇ψ)
= ω∗ · ∇ϕ = ∇ · [ϕω∗ ] .

The helicity H is defined by the integral (2). Assum-
ing that ω∗ vanishes out of V , we have

H ≡
∫
V
ω∗ · vd3x =

∫
V
∇ · [ϕω∗]d3x = 0. (43)

However, for the present velocity fields (33), the H
does not vanish in general, demonstrating that it is a
new representation. The helicity H is a measure of
linkage and knottedness of vortex lines.

3.4 Clebsch solution
The results of traditional variational principle without
the last term ⟨L∗

t [A], Ω⟩ of (21) are summarized as

v = ∇ϕ+ s∇ψ, (44)
1
2 v

2 + h+ ∂tϕ+ s ∂tψ = 0, (45)

Dts = 0, Dtψ + T = 0. (46)

The velocity field (44) is equivalent to the classical
Clebsch solution [3]. In fact, using (44) and (42), and
using a vector identity5, we have

ω × v = (v · ∇s)∇ψ − (v · ∇ψ)∇s,
∂tv = ∇∂tϕ+ ∂ts∇ψ + s∇∂tψ.

Adding the last two equations, we obtain

∂tv + ω × v = ∇(∂tϕ+ s ∂tψ)

+(Dts)∇ψ − (Dtψ)∇s,

Last two terms become T∇s due to (46). Thus, by
using (45), the following is satisfied:

∂tv + ω × v = −∇( 12 v
2 + h ) + T∇s. (47)

Owing to the relation dh = (1/ρ) dp+Tds of the foot-
note 1, this reduces to the Euler’s equation (3) owing
to the following vector identity,

(v · ∇)v = (∇× v)× v +∇( 12 v
2). (48)

5(∇s×∇ψ)× v = −(v · ∇ψ)∇s+ (v · ∇s)∇ψ.

3.5 Terms of total time derivative
Using the results of previous subsections, one can
show that both of the two terms of the Lagrangian
Λd3x of (21), i.e. ρDtϕ d3x and ρsDtψ d3x, are rep-
resented in the form of Lie-derivative.

Lie-derivative LtX takes different forms depend-
ing on the object X of operation [3]. Here we show
its form when X is a scalar field ϕ (a zero-form), or
d3x a volume three-form:

Lt[ϕ] ≡ ∂tϕ+ vk∂kϕ = Dt ϕ, (49)

Lt[d3x] ≡ (∂kv
k) d3x. (50)

(See (55) and (56) for the Lie-derivatives of a tangent
vector, or a cotangent vector.) Rate of change of mass
during the motion is given by

Lt[ρ d3x] = Lt[ρ] d3x+ ρLt[d3x]

= (∂tρ+ vk∂kρ+ ρ∂kv
k) d3x = 0,

by (41). Therefore we obtain

Lt[ϕρ d3x] = (Dtϕ) ρ d3x+ ϕLt[ρ d3x]
= (Dtϕ) ρ d3x. (51)

Similarly, using Dts = 0, we obtain

Lt

[
ψ s ρ d3x

]
= (Dtψ) sρ d3x. (52)

Thus it is found that the two terms of (21) can be writ-
ten in the following form of Lie-derivative:

(ρDtϕ+ ρsDtψ)d3x = Lt

[
(ϕρ+ψ s ρ) d3x

]
. (53)

This can be rewritten as (∂tΦ+ ∂k(v
kΦ)) d3x, where

Φ = ϕρ + ψ s ρ. In the action J of (23), the terms
∂tΦ + ∂k(v

kΦ) are integrated over the domain V ⊗
It, which are transformed to surface integrals over S
bounding it. Hence they do not influence the Euler-
Lagrange equation derived from the action principle
of the Lagrange variation.

The last term ⟨L∗
t [A], Ω⟩ of (21) is also written in

the form of Lie-derivative, by assuming that the vector
field Ω satisfies the equation of frozen field,

∂tΩ+∇× (Ω× v) = Lt[Ω] +Ω ∂kv
k = 0. (54)

Lie-derivatives of a tangent vector Ω = (Ωi) and a
cotangent vector A = (Ai) (a one-form) are given by

(Lt[Ω])i ≡ ∂tΩ
i + vk∂kΩ

i − Ωk∂kv
i, (55)

(L∗
t [A])i ≡ ∂tAi + vk∂kAi +Ak∂iv

k. (56)

By using these definitions, we have

⟨L∗
t [A],Ω⟩ d3x = Lt

[
⟨A, Ω⟩ d3x

]
(57)
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owing to the equation (54). Integration of (57) over
V ⊗ It is also transformed to surface integrals over
S. In fact, the equation (54) is required by the action
principle, as given by (32).

Thus, it has been shown that the three terms of
(21) added to ΛEul of (18) are all transformed to
surface integrals over the boundary S. Hence those
do not influence the Euler-Lagrange equation derived
from the action principle in the Lagrange variation,
although they are added to the Lagrangian in the Eu-
lerian variation.

3.6 Euler’s equation of motion is satisfied
Last step is to verify that the set of equations derived
in the section §3.2 in fact satisfies the Euler’s equa-
tion of motion. This is carried out for the flow field
described by (26), (27) and (28). Applying the covari-
ant derivative Dt = ∂t + v · ∇ to v of (33), we have

Dt[v] = Dt∇ϕ+ Dt(s∇ψ) +
1

ρ
Dtw− 1

ρ2
(Dtρ)w,

(58)
where, from (41),

Dtρ = −ρ (∂kvk). (59)

The first term can be rewritten as

Dt(∇ϕ) = ∇(Dtϕ)− ∂kϕ∇vk. (60)

Using (40) and (28), the second term of (58) is

Dt(s∇ψ) = s∇(Dtψ)− s ∂kψ∇vk

= −s∇T − s ∂kψ∇vk. (61)

By using (35), the third term is

Dtw
i = Dt(Ω

k)Cik +Ωk Dt(Cik). (62)

By (32) and (55), we have

Dt(Ω
k) = Ωl ∂lv

k − Ωk ∂lv
l ,

while for Dt(Cik), by using (35), we have

DtCik = ∂i(DtAk)− ∂k(DtAi)

−(∂iv
l) ∂lAk + (∂kv

l) ∂lAi .

Substituting these two into (62),

Dtwi = Ωl ∂lv
k (∂iAk − ∂kAi)

−Ωk ∂lv
l (∂iAk − ∂kAi) + Ωk

(
∂i(DtAk)

−∂k(DtAi)− (∂iv
l) ∂lAk + (∂kv

l) ∂lAi

)
.

The right hand side simplifies greatly by cancellation,
and we finally obtain

Dtw = −wk ∇vk − (∂lv
l)wi , (63)

wk = Ωl Ckl .

Substituting (59), (60), (61) and (63) into (58),

Dtv =∇(Dtϕ)− (∂kϕ+ s∂kψ +
1

ρ
wk)∇vk − s∇T

= ∇(Dtϕ)− vk ∇vk − s∇T
= ∇(Dtϕ− 1

2 v
2 − sT ) + T ∇s.

Using (27) and (28), this reduces to the Euler’s equa-
tion of motion (3):

Dtv = −∇h+ T ∇s = −1

ρ
∇p . (64)

since dh = (1/ρ) dp + T ds. Thus, it is found that
the present improved variation which takes account of
the new term ⟨L∗

t [A], Ω⟩ in (21) leads to a new re-
sult, i.e. Euler’s equation of motion is satisfied by the
new set of (26), (27) and (28), representing rotational
compressible flow field of an ideal fluid.

In the case of isentropic flows of uniform s, the
equation (64) reduces to

∂tv + (∇× v)× v +∇( 12 v
2) = −∇h , (65)

by replace Dtv with (∂t+v ·∇)v first and then using
(48) next. Taking curl of (65) and setting ∇× v = ω,
we obtain the vorticity equaiton (6),

∂tω +∇× (ω × v) = 0. (66)

4 Fluid Maxwell Equations
The analysis of §2.3 implied possibility of formulation
of fluid Maxwell equations. In this section, its sys-
tem of equations is presented, starting from the def-
inition of two vector fields E and H (analogous to
(10)) given by

E = −∂tv −∇h, H = ∇× v, (67)

Fluid Maxwell Equations can be derived from the
fluid equations (8) and (9) as follows:

(A) ∇ ·H = 0, (68)
(B) ∇×E + ∂tH = 0, (69)
(C) ∇ ·E = q, (70)
(D) a 2

0 ∇×H − ∂tE = J , (71)

q ≡ ∇ · [(v · ∇)v], (72)
J ≡ ∂2t v +∇∂th+ a 2

0∇× (∇× v), (73)
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[3, 8, 9], where a0 is a constant (the sound speed in
undisturbed state). From the calculus ∂t(C) + div(D),
we have the charge conservation: ∂tq + divJ = 0.

Using (8) and the definition E = −∂tv − ∇h,
the fluid-electric field E is given by

E = (v · ∇)v = ω × v +∇( 12 v
2). (74)

where (48) is used.

4.1 Derivation

Derivation of the fluid Maxwell equations (68) ∼ (71)
is carried out as follows.
(a) Equation (A) is deduced immediately from the

definition of H = ∇× v = ω.
(b) Equation (B) is an identity obtained from the def-

inition (67). Moreover, if the expression (74) is
substituted to E and ω to H , then the equation
(B) reduces to the vorticity equation (66).

(c) Equation (C) is just div [Eq.(74)] with the charge
density q defined by (72).

(d) Equation (D) is derived as follows.

Applying ∂t to E = −∂tv −∇h, we obtain

−∂tE − ∂2t v = ∇∂th,

Adding the term a 2
0 ∇×H = a20∇×(∇×v) on both

sides, this can be rearranged as follows:

a 2
0 ∇×H − ∂tE = J ,

J = ∂2t v +∇∂th+ a 2
0∇× (∇× v).

which is nothing but the equation (D).
The vector J can be given another expression by

using ∂th = −(v · ∇)h− a2∇ · v from the continuity
equation (9): This can be rewritten as

J = (∂2t − a20∇2)v + J∗,

J∗ = a20 ∇(∇ · v)−∇
(
a2 ∇ · v

)
−∇(v · ∇h),

where the following identity is used:

∇(∇ · v) = ∇× (∇× v) +∇2v, (75)

5 Equation of Sound Wave
Suppose that a localized flow is generated at an initial in-
stant in otherwise uniform state at rest, where undisturbed
values of the pressure, density and enthalpy are respectively
p0, ρ0 and h0. Equation of sound wave is derived from the
system of fluid Maxwell equations (A) ∼ (D) as follows
[8].

Differentiating Eq.(D) with respect to t, and eliminat-
ing ∂tH by using (B), we obtain

∂ 2
t E + a 2

0∇× (∇×E) = −∂tJ . (76)

The second term on the left can be rewritten by using the
identity (75), with v replaced by E. Then the equation (76)
reduces to

(∂ 2
t − a 2

0∇2)(E + ∂tv) = −a 2
0∇(∇ ·E)− ∂tJ

∗,(77)

J∗ = ∇
(
(a20 − a2)∇ · v

)
−∇(v · ∇h) ≡ a 2

0 ∇Q̂,
Q̂ = (1− â2)∇ · v − a−2

0 (v · ∇)h, (78)

where â = a/a0. We have E + ∂tv = −∇h from (67),
and also ∂tJ∗ = a 2

0 ∇∂tQ̂ from (78). Therefore, all the
terms are of the form of gradient of scalar fields and (77)
can be integrated spatially. Dividing (77) with −a 2

0 and
integrating it, we obtain the following wave equation:

(a−2
0 ∂ 2

t −∇2) h̃ = S(x, t),

S(x, t) ≡ ∇ ·E + ∂tQ̂, (79)

where h̃ ≡ h − h0 = (p − p0)/ρ. Thus, the vectorial
form of wave equation (77) has been reduced to the single
equation for a scalar field h̃ (see the first of (15)). The term
S(x, t) is a source of the wave. Using (74), we obtain an
explicit form of the first ∇ ·E of the source S as ∇ ·E =
div(ω×v)+∇2 1

2 v
2. The first term div(ω×v) implies that

the motion of ω generates sound waves. This is the source
term of the Vortex sound (Kambe 2010c), and contribution
from the second term ∇2 1

2 v
2 vanishes in an ideal fluid in

which total kinetic energy
∫

1
2 v

2 d3x is conserved. Mach
number of the source flow is defined by M = |v|/a0, then
the second term ∂tQ̂ of S is O(M2), namely, higher order
if M is small enough. [10]

6 Equation of motion of a test parti-
cle in a flow field

Analogy between fluid mechanics and electromagnetism is
also found in the equation of motion of a test particle in
a flow field as well [3, 8]. Suppose that a test particle of
massm is moving in a flow field v(x, t), which is unsteady,
rotational and compressible. The size of the particle and its
velocity are assumed to be so small that its influence on the
background velocity field v(x, t) is negligible, namely the
velocity field v is regarded as independent of the position
and velocity of the particle.

The particle velocity is defined by u(t) relative to the
fluid velocity v. Then, the total particle velocity is u+v. In
this circumstance, the i-th component of total momentum
Pi associated with the test particle moving in the flow field
is expressed by the sum: Pi = mui + mikuk,6 and the
equation of motion of the particle is given by

6According to the hydrodynamic theory (e.g. Landau & Lif-
shitz (1987)) when a solid particle moves through the fluid (at
rest), the fluid energy induced by the relative particle motion of
velocity u = (ui) is expressed in the form 1

2 mikuiuk by using
the mass tensor mik. Additional fluid momentum induced by the
particle motion is given by mikuk.
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d
dt

P = mE +mu×H −m∇ϕg, (80)

(Kambe 2010b), where E and H take the same expressions
as those of (67), and P = (Pi), Pi = mui +mikuk, and
ϕg = gz. Obviously, the equation (80) is analogous to the
equation of motion of a charged particle in an electromag-
netism of electric field Eem and magnetic field Hem:

d
dt
(mve) = eEem + (e/c)ve ×Hem −m∇Φg , (81)

where ve is the velocity of a charged particle, and c the light
velocity. Rewriting the second term of (80) as (m/a0)u×
(a0H), and comparing the first two terms on the right of
(80) and (81), it is found that there is correspondence: e⇔
m, Eem ⇔ E, and Hem ⇔ a0 H .

7 Conclusion
Following the scenrio of the gauge theory of physics, the
fundamental framework of fluid mechanics has been recon-
sidered, and a new variational formulation is proposed for
flows of an ideal fluid. This lead to a new representation of
compressible rotational flows of an ideal fluid with an ex-
plicit expression of helicity. The system of new expressions
satisfies the Euler’s equation of motion.

Associated with two symmetries (translation and
space-rotation) of flow field, there are two gauge fields,
which do not exist in the system of discrete masses, and
fluid Maxwell equations are formulated for the two gauge
fields. Sound wave within the fluid is analogous to the elec-
tromagnetic wave, in the sense that phase speeds of both
waves are independent of wave lengths, i.e. non-dispersive.

Thus, the present study of fluid flows on the basis of
the gauge theory provides us a new playground on which
one can develop new activity to study the dynamics of fluid
flows.
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the third International Conference on Theoretical and Ap-
plied Mechanics 2012.

Appendix

A Background of the theory
This appendix reviews the background of the gauge theory
and describes the scenario of the gauge principle in physi-
cal systems, from the Appendix A of [2].

A.1 Gauge invariances
In the theory of electromagnetism, it is well-known that
there is an invariance under a gauge transformation of elec-

tromagnetic potentials consisting of a scalar potential ϕ and
a vector potential A. The electric field E and magnetic
field B are represented as E = −∇ϕ−(1/c)(∂A/∂t), and
B = ∇×A, where c is the light velocity. The idea is that
the fields E and B are unchanged by the following trans-
formation: (ϕ,A) → (ϕ′,A′), where ϕ′ = ϕ − c−1∂tf ,
A′ = A + ∇ f with f(x, t) being an arbitrary differen-
tiable scalar function of position x and time t.

Gauge invariance is also known in certain rotational
flows of the Clebsch representation (Eckart 1960). Its ve-
locity field is represented by (44) as

v = ∇ϕ+ s∇ψ,

where ϕ, ψ and s are scalar functions, and ψ satisfies the
equation Dtψ = 0. Let ϕ′, ψ′ and s′ be a second set giv-
ing the same velocity field v, which implies the following:
s∇ψ − s′ ∇ψ′ = ∇(ϕ′ − ϕ). This relation will hold true
by the relation ϕ′ − ϕ = F (ψ, ψ′), if s = ∂F/∂ψ and
s′ = −∂F/∂ψ′. Therefore, s and ψ are determined only
up to such a contact transformation, and ϕ transforms by
the addition of the generating function F (ψ, ψ′). It can
be shown that the two sets of triplet give the identical flow
field. Thus, there exist some freedom in the expressions of
physical fields in terms of potentials.

A.2 Related aspects in quantum mechanics
and relativity theory

In quantum mechanics, Schrödinger’s equation for a
charged particle of mass m and electromagnetic fields are
invariant with respect to a gauge transformation. This
is as follows. In the absence of electromagnetic fields,
Schrödinger’s equation for a wave function ψ of a free par-
ticle m is written as

Sfree[ψ] ≡ ih̄ ∂tψ − 1

2m
p2k ψ = 0,

where pk = −ih̄ ∂k is the momentum operator (∂k =
∂/∂xk for k = 1, 2, 3).

In the presence of electromagnetic fields,
Schrödinger’s equation for a particle with an electric
charge e is obtained by the transformation:

∂t → ∂t + (e/ih̄)A0,

∂k → ∂k + (e/ih̄c)Ak, (k = 1, 2, 3), (82)

where (Aµ) = (A0, A1, A2, A3) = (A0, A
em) =

(−ϕem, Aem) is a four-vector potential, from which the
electromagnetic fields Eem and Hem are determined by
(10) of §2.2 of main text. Thus, we obtain the equation
with electromagnetic fields:

SA[ψ] ≡ ih̄ ∂tψ − eϕψ

− 1

2m

[
(−ih̄)(∂k +

e

ih̄c
Ak)

]2
ψ = 0.

A point in space-time is denoted by a four vector with upper
indices, (xµ) = (x0, x1, x2, x3) with x0 = ct.
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Suppose that a wave function ψ(xµ) satisfies the equa-
tion SA[ψ] = 0, and consider the following set of transfor-
mations of ψ(xµ) and Aµ:

ψ′(xµ) = exp [i α(xµ)] ψ(xµ),

Ak → A′
k = Ak + ∂kβ, ϕ→ ϕ′ = ϕ− c−1∂tβ,

where α = (e/h̄c)β. Then, it is shown readily that
the transformed function ψ′(xµ) satisfies the Schrödinger
equation SA′ [ψ′] = 0. This is the gauge invariance of the
system of an electric charge in electromagnetic fields. The
system is said to have a gauge symmetry.

A.3 Brief scenario of gauge principle
In the gauge theory of particle physics, a free-particle La-
grangian Λfree[ψ] is defined first for the wave function
ψ(xµ) of a particle with an electric charge. Let us con-
sider the following gauge transformation: ψ 7→ eiα ψ.
If Λfree is invariant under the transformation when α is a
constant, it is said that Λfree has a global gauge invariance.
In spite of this, it often happens that Λfree is not invariant
for a function α = α(x), i.e. Λfree is not gauge-invariant
locally. In this circumstance, it is instrumental to introduce
a new field in order to acquire local gauge invariance. If
the new field (a gauge field) is chosen appropriately, local
gauge invariance can be recovered.

In the section B, the local gauge-invariance was ac-
quired by replacing ∂µ with

Dµ = ∂µ +Aµ

(see (82)), where Aµ = (e/ih̄c)Aµ, and Aµ(x) is the
electromagnetic potential (and termed a connection form
in mathematics). The operator Dµ is called the covariant
derivative.

Thus, when the original Lagrangian is not locally
gauge invariant, the principle of local gauge invariance re-
quires a new gauge field to be introduced in order to ac-
quire local gauge invariance, and the Lagrangian is to be
altered by replacing the partial derivative with the covari-
ant derivative including the gauge field. This is the Weyl’s
gauge principle.

In mathematical terms, suppose that we have a group
G of transformations and an element g(x) ∈ G (for x ∈M
withM a space where ψ is defined) and that the wave func-
tion ψ(x) is transformed as ψ′ = g(x)ψ. In the previous
example, g(x) = eiα(x) and the group is G = U(1). In-
troducing the gauge field A allows us to define a covari-
ant derivative D = ∂ + A as a generalization of the par-
tial derivative ∂ that transforms as gD = g(∂ + A) =
(∂′ + A′)g. If we operates the right hand side on ψ,
we obtain (∂′ + A′)gψ = (∂′ + A′)ψ′ = D′ψ′ where
D′ = ∂′+A′. Thus, we obtain D′ψ′ = gDψ, showing that
Dψ transforms in the same way as ψ itself.

In dynamical systems which evolve with the time t,
such as the present case of fluid flows, replacement is to be
made only for the t derivative: ∂t → Dt = ∂t +A(x).

B Gauge transformations
Local gauge transformations are considered, and then in-
variance of the operator Dt is presented, from §7.6 of [3].

B.1 Local gauge transformations

Suppose that there are two Eulerian coordinate frames F
and F ′. We consider a transformation of the position coor-
dinate x of F to x′ of another frame F ′. Suppose that the
transformation is given by

LGT : x′(x, t) = x+ ξ(x, t), t′ = t. (83)

This LGT is regarded as a local gauge transformation be-
tween two non-inertial frames of reference F and F ′. In
fact, it means that the position coordinate Xa(a, t) of a
fluid particle a in the frame F is transformed to a new posi-
tion coordinateX ′

a given byX ′
a(Xa, t) = Xa(t)+ξ(Xa, t)

in the frame F ′. Therefore, its velocity v = (d/dt)Xa(t)
is transformed to

v′(x′) ≡ d
dt′
X ′

a

=
d
dt
X ′

a = v(Xa) + (d/dt)ξa, (84)

(d/dt)ξa = ∂tξ + (v · ∇)ξ
∣∣∣
x=Xa

, (85)

where ξa ≡ ξ(Xa, t). This is a transformation between
two coordinate values of the same particle described by two
different frames of reference F and F ′.7 Physically, two
vectors Xa and X ′

a denote the same point, represented by
the same value of Lagrange coordinate a. Namely, we are
considering a gauge transformation between two reference
frames.

According to the transformation (83), the time deriva-
tive ∂t and space derivative ∂k = ∂/∂xk in the frame F
are related to the derivatives ∂t′ and ∂′k = ∂/∂x′k of F ′ as
follows:

∂t = ∂t′ + (∂tξ) · ∇′, ∇′ = (∂′k), (86)
∂k = ∂′k + ∂kξl ∂

′
l, ∂′k = ∂/∂x′k . (87)

The transformation LGT is also called a local translational
transformation.

B.2 Gauge invariance of Dt

The operator Dt ≡ ∂t + (v · ∇) is invariant with respect to
LGT: i.e. Dt = D′

t. In fact from (84) and (87), we have

v · ∇ = v · ∇′ + (v · ∇ξ) · ∇′

= v′(x′) · ∇′ +
(
− (dξ/dt) + v · ∇ξ

)
· ∇′,

7In this respect, present transformation is different from the
variation considered in §7.5.3, although the expression x′(x, t) =
x+ ξ is the same for the two cases.
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where v = v′−dξ/dt is used. The last term is rewritten as(
− (dξ/dt) + v · ∇ξ

)
· ∇′ = −∂tξ · ∇′ = ∂t′ − ∂t,

by using (85) and (86). Hence, we have

Dt = ∂t + v · ∇ = ∂t′ + v′ · ∇′. (88)

This means that the operator Dt satisfies the invariance with
respect to LGT, i.e. the translation symmetry. Thus, the
operator Dt is the covariant derivative in the sense of gauge
theory [3], in place of the partial derivative ∂t.

The particle labels ai(t,x) (i = 1, 2, 3) are scalars,
and move together with the material particle with the ve-
locity v = ∂tX(t,a). Hence, at any time, we have
Dta

i = ∂ta
i + (v · ∇)ai = 0.Writing the particle posi-

tion as x = X(t,a), we have

Dtx = DtX(t,a(t,x)) = ∂tX(t,a) + Dta · ∇aX

= ∂τX(τ,a) ≡ v. (89)

where (∇aX) = (∂Xk/∂al). Thus, we have the equality:

∂τ = Dt = ∂t + (v · ∇),

which was used already in §7.5.1. Velocity v can be defined
by Dtx. In fact, operating D′

t′ on the equation (83) and
using D′

t′ = Dt, we obtain

v′ = D′
t′x

′ = Dt(x+ ξ) = v + Dtξ. (90)

This is consistent with (84). Thus, the particle velocity is
defined by v(x, t) = Dtx.

B.3 Gauge transformation (general)
Suppose that we have a group G, and consider the following
transformation by its element g ∈ G.
(a) A field u(x) is defined on a manifold M . Suppose that
the coordinate x ∈M is transformed to x′ = gx by g ∈ G,
and the field u to u′ defined by u′g = gu simultaneously.
Then we have

u′(x′) ≡ u′g x = gu x = gu(x) (91)

This means that the field u is transformed in the same way
as the coordinate x.

(b) Next, suppose that a field of group element g(x)
(where g ∈ G) is defined at each point x ∈ M , and u(x) is
transformed according to u′g = gu.

In addition, in place of the partial derivative ∂t (with
respect to time), we define a covariant derivative Dt = ∂t+
A by introducing a gauge field A.

Its transformation is assumed to be given by

D′
t′ g = gDt,

where D′
t′ = ∂′ + A′ and ∂′ = ∂/∂t′. Operating the left

side D′
t′ g on u, we obtain D′

t′ g u = D′
t′ u

′g. Equating this
to the right side gDtu, we have

D′
t′ g u = D′

t′ u
′g ≡ (Dtu)

′g = gDtu. (92)

Hence, Dtu is transformed in the same way as u.
In the example of the previous section where g is

LGT , by setting u to be the particle coordinate x and gu
the transformed coordinate x′, Dtu corresponds to the ve-
locity v, and the equation (92) can be written as

v′(x′) = D′
t′x

′ = gDtx = g v(x),

where gv is defined by v + Dtξ by (90). We consider this
kind of transformations below.
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